Next-Generation Electromagnetic Sounding of the Lunar Interior

Robert E. Grimm

Dept. of Space Studies

Southwest Research Institute

Gregory T. Delory

Space Sciences Laboratory

University of California, Berkeley

NASA Lunar Science Institute Meeting
July, 2008

Graphical Overview

Temperature vs. Conductivity

EM Sounding

- Measures electrical structure from its inductive response.
 - Is distinct from propagative methods (radar).
 - Natural or artificial sources.
 - Many approaches.

- Skin Depth (km) =
$$0.5 \sqrt{\rho/f} = 0.5 \sqrt{T/\sigma}$$

f = frequency, Hz; T = period, sec

ρ = resistvity, Ω-m; σ = conductivity, S/m

Apollo EM

Transfer-Function Method

- Determine inductive signal by comparing magnetic-field measurements from orbiting and surface magnetometers.
- Whole-moon, radially-symmetric structure at lowest frequencies (dominantly 10 μHz–10 mHz).

Science Results

- Few percent free iron in the mantle;
 several percent total iron
- Core radius < 400 km.
 - Best estimate (Hood 1996) using single instrument (Lunar Prospector) assuming perfect conductor.
- Constrained deep mantle geotherm.
- Shallow thermal structure consistent with heat flow.

Dyal et al, 1974

- Resolve outmost several hundred kilometers
 - Lithospheric thermal gradient
 - Base of magma ocean
 - Major crustal heterogeneity (PKT / FHT / SPA)
 - Requires higher frequencies than measured by Apollo (>> 1 mHz).

- Constrain composition of the mantle.
- Discriminate molten-silicate vs. solid-metal core?
 - Requires very long-period signals (days-weeks).
 - Done better with seismic network.

Mantle Water Content

• Few hundred ppm water can fit electrical conductivity at reasonable temperatures.

Upper-Mantle Structure

- Frequencies >10 mHz required to resolve conductivity ambiguity <500 km depth.
- Propagation >0.1-1 kHz.
- Energy cutoff > 100 Hz

Implementation

- Wavelengths ~1-10 mHz are comparable to lunar radius.
 - Transfer-function method breaks down.
- Magnetotelluric Method (MT)
 - Single-station sounding using correlation of electric and magnetic fields.
 - New challenges for spaceflight application
 - Shorter baseline for E-field measurements
 - Plasma environment

Lunar Magnetotelluric Sounding

- 2x three-component fluxgate magnetometers
 - Horizontal components used in MT sounding; vertical is check and/or GDS.
 - Two magnetometers mitigate S/C interference by differencing method.
- 3x electrodes (together, the electrometer)
 - Form orthogonal horizontal electric field components from 3 voltage probes.
 - 3-4 probes away from S/C preferred.
- 1x Plasma Diagnostics package
 - Use to characterize plasma environment and thus eliminate non-inductive fields.
- Operations
 - Onboard spectral estimation to cut data rate.
 - Operate during magnetotail passages and nights to minimize plasma effects.
- Resources: Several kg, W, \$M

Conclusion

- EM constraints on core maximized from Apollo and Lunar Prospector.
 - Unless very long periods days-weeks can be accurately measured.
- Further lab/theory on electrical conductivity can elucidate linked constraints on mantle temperature vs. water content.
- Magnetotelluric sounding can measure high frequencies necessary to resolve upper 500 km, which includes former magma ocean as well as present lithospheric thickness and its lateral heterogeneity.
 - International Lunar Network

Sources

Data Flow

EM Sounding of Earth's Lithosphere

MT profile across NW Canada (Jones et al., 2005).

Red = conductive Blue = resistive.

Major conductor at 50-200 km depth (black outline) generally interpreted as top of asthenosphere.

Subducted slab (suture zone) imaged between double black lines.

Overview

- *Goal*: Understand interior structure and thermal evolution of the Moon.
 - Complements seismology and/or in situ heat flow.
- Objective: Infer internal temperature and composition.
- *Investigation*: Determine electrical conductivity structure of the lunar interior.
- *Measurements*: Frequency-dependent apparent conductivity (EM impedance or transfer function) using one or more of a variety of methods.
- Auxiliary results: Electromagnetic environment, crustal magnetism.